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We study the asymptotic behavior as time /- +o0 of certain nonstationary
Markov chains, and prove the convergence of the annealing algorithm in Monte
Carlo simulations. We find that in the limit  » +o0o, a nonstationary Markov
chain may exhibit “phase transitions.” Nonstationary Markov chains in general,
and the annealing algorithm in particular, lead to biased estimators for the
expectation values of the process. We compute the leading terms in the bias and
the variance of the sample-means estimator. We find that the annealing
algorithm converges if the temperature 7(z) goes to zero no faster than
C/log(t/t,) as t - +co, with a computable constant C and ¢, the initial time.
The bias and the variance of the sample-means estimator in the annealing
algorithm go to zero like O(r~'**) for some 0 <e< 1, with ¢=0 only in very
special circumstances. Our results concerning the convergence of the annealing
algorithm, and the rate of convergence to zero of the bias and the variance of
the sample-means estimator, provide a rigorous procedure for choosing the
optimal “annealing schedule.” This optimal choice reflects the competition
between two physical effects: (a) The “adiabatic” effect, whereby if the tem-
perature is lowered 100 abruptly the system may end up not in a ground state
but in a nearby metastable state, and (b) the “super-cooling” effect, whereby if
the temperature is lowered 00 slowly the system will indeed approach the
ground state(s) but may do so extremely slowly.

KEY WORDS: Nonstationary Markov chains; annealing algorithm; anneal-
ing schedule; unbiased estimators.

1. INTRODUCTION

In this paper we study the asymptotic behavior as time ¢t — +o0 of certain
nonstationary Markov chains, and prove the convergence of the annealing
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algorithm in Monte Carlo simulations. We find that in the limit 1 > + o0, a
nonstationary Markov chain may exhibit “phase transitions,” and the law
of large numbers may fail, in the sense that the sample means do not form
a consistent sequence of estimators for the ¢— +oo stationary state.
However, under appropriate conditions on the decay rate as ¢ — 400 of
the one-step transition probabilities for nonstationary Markov chains in
general, and the annealing algorithm in particular, we show that the
estimators are in fact consistent, albeit biased. We compute explicitly the
leading terms in the bias and the variance of such an estimator. We find
that the annealing algorithm converges if the temperature 7(¢) goes to zero
as t — 400 no faster than C/log(#/t,). We given an (in general optimal)
expression for the constant C in terms of the energies. Here ¢, is the initial
time (in the rest of the paper we set ¢,=1). The bias and the variance of
the sample-means estimator in the annealing algorithm go to zero like
O(r="'*+¢) for some 0<e< 1, with ¢=0 only in very spcial circumstances.

The Metropolis algorithm was originally introduced” for studying
numerically the equilibrium properties of statistical-mechanical systems at
a given temperature. Simulations based on Metropolis-type Monte Carlo
techniques have been used extensively in the study"® of time evolution of

“spin and other lattice systems. The annealing algorithm is a modification of

the Metropolis algorithm, in which the temperature is varied with time
according to an “annealing schedule” 7(¢). Simulated annealing has been
important in Monte Carlo studies of “random systems” (in particular “spin
glasses”) in statistical mechanics,*>?>! and it has been used as an
empirical test for a first-order phase transition in lattice gauge theories.**
Recently, it has been proposed'® for use as an optimization technique, and
it has been applied successfully on a number of combinatorial optimization
problems including the traveling salesman problem and certain other
problems (known as NP-complete problems) arising in computer design.
In Ref. 8, the annealing algorithm was introduced as a tool in computer
vision, and the first rigorous result, concerning the convergence of the
algorithm, was established. Our present mathematical work grew out of
Metropolis-type Monte Carlo numerical experiments we are currently per-
forming, concerning the restoration of degraded images, and edge and
object detection in digital images.

A basic question in statistical-mechanical systems concerns their low-
temperature behavior, which is controlled by the ground states and other
states near them in energy. Experimentally, the ground state of a system
can be reached by first “melting” the substance and then cooling it slowly,
being careful to pass especially slowly through the “freezing” temperature
(if any). If the temperature is lowered too abruptly, then the system may
end up not in a ground state, but in a nearby metastable state, ie., in a
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local but not global minimum of the energy (we refer to this phenomenon
as the “adiabatic” effect). If, on the other hand, the temperature is lowered
too slowly, then the system will indeed approach the ground state(s), but
may do so extremely slowly (we refer to this phenomenon as the “super-
cooling” effect). The optimal choice of the annealing schedule in Monte
Carlo simulations is determined by the competition between these two
effects. [For random systems (spin glasses), simulations are complicated
further by the fact that these systems seem to have not one but many
nearby almost-degenerate random ground states. ]

In this paper, we treat the annealing algorithm as a special case of the
theory of nonstationary Markov chains, and provide an (in general
optimal) lower bound on the rate at which the temperature must be
lowered in order to reach the ground state. Our results concerning the con-
vergence of the annealing algorithm, and the rate of convergence to zero of
the bias and the variance of the sample-means estimator, provide a
rigorous procedure for choosing the best annealing schedule.

We now describe briefly our main results: Let { X"} be a discrete-time
(t=0, 1, 2,...), nonstationary Markov chain with finite state space

Q=1{81, 52, Sp} (1.1)
one-step transition probabilities
p0)=pi-t0=PX =5 X071 —5), Lj=1l..n (1.2)
and initial probability distribution
= PX P =y, i=1,..,n (1.3a)

al® =0, Y al9=1 (1.3b)

i=1
We assume that the limit
p,(.j’*l”) - py a8 t—> +0, ihj=1,..,n (1.4)

exists, and that the limiting matrix P=P(o0)=(p,) has one or more
(irreducible) ergodic (recurrent) sets, and perhaps some transient states.
Aggregating the states properly, P takes the form
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where S, y=1,.., m are the r, x r, transition matrices for the m ergodic
sets, R concerns the process as long as it stays in the n —37"_, r, transient
states, and L"), y =1,..., m concern transitions from the transient states into
the ergodic sets S®), y = 1,..., m, respectively. The regions O consist entirely
of zeros. We will be concerned mainly with the case when the ergodic states
are aperiodic. Corresponding to the form (1.5) on P, the matrix P(f)=
PU=0 = (pt=19) has the form

P(t)=p"~"=

Qb (1,1 : (1,2 Cp3)y . 1,m) . (1,m +1)
A 40 Vi VY : Vi A A
(2,1) (2) (2,2) . 17(2,3) (2,m) (2m+ 1)
V STEHVEY VG V" 468
e FRTREEEREERS FESEREERERE e FRREERER
vt Vi Vi STAVE Vi
LL(l)_l_ V%:’)"Fl,l) : L(2)+ VE7;+1,2) : :L(m)+ VE;')H'I”"): R+ Vﬁ:r)lﬁ»l,m-ﬁ—l) §
(1.6)

where the matrices
VED (1) -0 as {— +o0, k,i=12,..m

By the well-known Peron-Frobenius theorem, at each epoch ¢, the matrix
P(t) has an invariant (“equilibrium”) probability vector =(f)=
(,(0),..., T, (2)), i.c., there exists a vector n(¢) such that

n

nt)= Y. n{t) p§ " (1.7a)

i=1
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n

Y mft)=1

i=1

n(1)20, j=l,.,n

The higher transitions probabilities p{®" are defined by

pP=PX"Y=5X"=s) for t,<t

and satisfy the Chapman-Kolmogorov equation
n
per=3 pierpyet, for to<t'<t
I=1
and also

j=1

We will also use the absolute (or unconditional) probabilities '

n

(xj(‘) = P(X(”: Sj) — Z Otf»O)Pl(-?”)
i=1

which satisfy

n
=3 alplen  for 0<to<r—1

i=1

n
. =1

Jj=1

77

(1.7b)

(1.7¢)

(1.8)

(1.9)

(1.10a)

(1.10b)

(1.10c)

Assuming that the limit (1.4) exists and that =(z) is unique, we are

concerned mainly with four questions:

(1) Does the limit of p{>") exist as t - +co, and if yes, is the limit

independent of the initial state i?

(i) Does lim, , |, 7,(z) exist?

(ii1) If both of the above limits exist, are they the same, i.e., does

lim pPY= lim m(z)

= 0 t— +o0

hold?

(L.11)
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(iv) Do the bias and the variance of the sample-means estimator
(ergodic average)
1 t
7 L s

converge to zero as f — +oo, and if yes, what is the rate of convergence?
Here fis a function on the Markov chain {X"}.

If the limiting matrix P has only one ergodic component (and possibly
transient states), then p®” and =(¢) have limits as ¢ — +oco, and (1.11)
holds always. But if P has two or more ergodic components then
everything can happen. The examples of the Appendix show that any of the
following possibilities may occur: (a) neither n(z) nor P*" has a limit; (b)
n(7) has no limit, but P>" has a limit, and furthermore the limit of of p{>*
may or may not depend on the initial state i; (c) both n(¢) and P®? have
limits, but the limit of p{*" depends on the initial state i, and therefore
(1.11) does not hold. We do not know whether the following possibility
occurs: (d) n(¢) has a limit but not P(*". We believe that case (d) does not
occur. In the special case of the annealing algorithm =(¢) and P®" always
have a limit, but (1.11) may fail because the limit of p{* depends on i (this
occurs when the temperature goes to zero sufﬁCIently fast). All the limits
above are ordinary limits, because we assume that the states are aperiodic
with respect to the matrix P. Some of our results hold for periodic states
provided that the limits are taken in the sense of some summability method
such as Euler or Cesaro means.

If P has more than one ergodic component, then the limit of n(#) may
fail to exist no matter how fast the decay rate in (1.4) is, while if the decay
rate in (1.4) is fast enough p{>" always has a limit which may, however,
depend on the initial state i. If both n(r) and P" have limits, then a
necessary condition for (1.11) to hold is

+ oo

Y Tr(I— P10y = +Z

t=1

pY—t) = +oo (1.12)

II M:

where [ is the identity matrix. Sufficient conditions for (1.11) to hold are
given in Theorems 1.1 and 1.2 below and in Section 2. If (1.11) holds, then
the bias and the variance of the sample-means estimator go to zero as
t— +o0, but they may do so slowly. Theorem 1.3 provides conditions
under which the variance converges to zero like O(r™'*¢) for some
0<e<1. These conditions yield a procedure for choosing the optimal
annealing schedule for the annealing algorithm.

The intuitive reason for the nonexistence of lim,_, . 7(¢) (as well as
of lim,_, , P®") is the occurrence of “phase transitions” when P has
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more than one ergotic component: Let P have the form (1.5) with m>2,
and let

A7 = (0, ), y=1,20,m
be the unique equilibrium probability distributions (Ref. 7, p. 394) of the

ergodic matrices S, y=1,.., m, ie. the unique probability vectors that
satisfy

= p8Y,  y=1Le,m

i=1

(1.13a)
" >0, 2 =1
J=1
Let
2 =(0,.......,0, 5§, #, 0,....cr., 0), y=1,.,m (113b)
!‘1+u.+r-,_1 n— ’Zn: r

Then any equilibrium distribution g of P is a convex combination of
) (m)
wt, w e,

,U=é(1),u(l)+ _{_é(fn)ﬂ(m}
. (1.14)
Y =1, 920, y=l..m

v=1

What then may happen is that different subsequences of n(z) [or p{®"]
may converge to different convex combinations of the u’s. (In the anneal-
ing algorithm this cannot occur for n(r), but p{® may converge to a con-
vex combination that depends on i).

In order to state our first main result, we will need the probability that
a transient state falls eventually into an ergodic component: Here and
through this paper we shall denote the state in the yth, y=1,..., m, ergodic
component by S%, and the transient states by R Let {X'} be the
stationary Markov chain associated with the limiting transition probability
matrix P in (1.5). Let

_piy _ $0) _
z;,=P{XWeS" forsome t=1,2,.| X =g},

j=l’1+ +rm+ 1’.__’ n, y= 1,.._’ m (115)
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Clearty
=0, y=1,.,m, jeR(j=ri+ - +r,+1,.,n) (1.16a)

Y zp=1, forevery j=ri+ - +r,+1,..,n (1.16b)

The probabilities z; can be computed explicitly by considering the
lim, , .., P*. See formula (3.17) for the case when P has two ergodic com-
ponents. There is a similar formula for the general case.

Here is our first result:

Theorem 1.1. Let p{~ " be the one-step transition probabilities of
a discrete-time, nonstationary, finite Markov chain which converges to p;
as t— +oo.

(1) If P=(p,) has a single ergodic aperiodic component S and
possibly transient states R, then =n(¢) and P®" have limits as ¢— +oo.
Furthermore, if u= (g, ts,-s #s5 0,.., 0) is the unique equilibrium
probability distribution of P, then

lim pP=p,  j=1.,n andall i=1,..,n (1.17a)
t— 400
and
lim 7(r)=u (1.17b)
1> +oo

(2) Suppose that P has exactly two ergodic aperiodic components
5™ and §®), and possibly transient states R, i.e., P is of the form (1.5) with
m=2. Let p, u® be as in (1.13b), and z,, z,, j=r,+r,+ L., n as in
(1.15). Let

p(fAI’t)zpij‘F Vij(t), Lj=1,.,n (1.18)

g
and
2
¢(t): Z Auz('2)(Vr1+i,l(t)+ S Vr1+i,r1(t)+ Vr1+i,r1+r2+1(I)Zr1+rz+1,1
i=1
+ T + Vr1+i,n(t)zn,l) (1193)

rq
W(t)z Z :uz('l)(Vi,rl+1(t)+ A o Vi,r1+r2(t)+ Vi,r1+rz+](t)zr1+rz+1,2
i=1

+ o+ V(0)z,,) (1.19b)
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Then:
(i) If

S 40 4 9] < oo (1.20)

then for each 1 <i#k<n,

hmsuplpo’) p(?”)|¢0, j=1,,r +r, (1.21)
(i) If
too
Z [ +¥(t)] =+ (1.22)

then for each 1< k<n,

lim sup|p{”—p@I =0, j=1,.,n (1.23)

I — +co ik

Furthermore, if in addition to (1.22), the invariant probability vector n(¢)
has a limit as # — +oo, then lim, _, ., p{*" exists, and we have

lim p(o’)— 11m n(t), j=1..,n (1.24)

t— +00

independently of the initial state i.

Note that ¢(7) and () involve only the entries of the matrices
VEU(1), ¥>3)(1), and V2(¢), VE3)(1), respectively [in the representation
(1.6) with m=27]. Hence ¢(t), ¥(z) are strictly positive (and go to zero as
t— +o0). Theorem 1.1, together with some other results, are proven in
Section 3. Part (1) is intuitively obvious because of the nonoccurrence of
phase transitions [i.e., because of the uniqueness of the equilibium vector
of P (Ref. 13, Theorem 6.2.1)]. The proof of this part is simple. In contrast,
the proof of part (2) is more delicate. We do not known whether such a
sharp theorem holds when P has more than two ergodic aperiodic com-
ponents (see related remarks in Section 3). The example of the Appendix
shows that 7(t) may fail to have a limit under either condition (1.20) or
condition (1.22). This example also shows that (1.22) alone does not
necessarily imply the existence of lim,_ . p{?. For the annealing
algorithm, condition (1.22) provides a sharp value of the constant C we
mentioned in the beginning of this Introduction.

The next theorem is weaker than Theorem 1.1, but it holds even if the
limit (1.4) does not exist.

822/39/1-2-6
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Theorem 1.2. Let p{/~"" be the one-step transition probabilities
of a discrete-time, nonstationary, finite Markov chain with an invariant
probability vector =(¢) satisfying (1.7).

(1) Suppose that there exists an integer N such that for a fixed
integer #,=0, 1, 2,.., we have

n
m}‘cn Z min{pgjt0+(v—-l)N,t(]+vN)’ pg_o+(v71)N,to+vN)}zcv(lo) (].253.)

i, j=1
with
+ o
Y. Cyltg) =+ (1.25b)
v=1
then
limmax| p) — plg) =0 (126)

(2) Suppose now that (1.25) holds for every integer 7,=0, 1, 2,....
Also assume that for some 720

+ZOOZIRJ-(I)—R,-(IJr1)|< +00 (1.27)

(=T j

Then lim, , , ., n(¢), and lim, , , , P'®" exist, and if

lim nf(t)=m,, j=1..,n (1.28)
t— +o©

then
lim p}f”)=nj, j=1,.,n (1.29)
- 4o

independently of the initial state ..

The proofs of Theorems 1.2 and 1.2 are entirely different. Theorem 1.2
(with a minor change, see Section 2) is apparently known in the literature
(Ref. 11, Theorems V.3.2 and V.4.3).” Accordingly, in Section 2, we only

2 We thank one of the referees for bringing to our attention Refs. 6, 9, and 11, and further
references on nonstationary Markov chains contained in Refs. 9 and 11. The quantity (1.25a)
was introduced by Dobrushin® and is known as Dobrushin’s ergodic coefficient. Our
independent introduction was motivated by the proof of Theorem 4.1.3 of Ref 13 for
stationary Markov chains. This led us to the computation of the best constant in Lemma 2.1
which provides the basic estimate in the proof of Theorem 1.2. This lemma is equivalent to
Lemma V.2.4 of Ref. 11. Reference 9 contains an alternative proof of (1.26).

Part (1) of Theorem 1.1 is also contained in Ref. 11, Theorem V.4.5, but our proof in
Section 3 is new. Also, the proof of the entire Theorem 1.1 is very different from the circle of
ideas involved in the proof of Theorem 1.2.
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outline the proofs of Theorem 1.2 and some variants of it, and present
mainly some technical estimates which are needed in the rest of the paper.
Condition (1.22) is, in general, sharper than condition (1.25), and much
easier to verify in practice. The two conditions are equivalent for the Exam-
ple of the Appendix.

Condition (1.27) is clearly satisfied if the limit (1.28) exists and is
achieved monotonically (perhaps for some js from above and for other js
from below). This is the case in the annealing algorithm (see Theorem 1.4
below and Section 5). Condition (1.27) is not needed in Theorem 1.1 or the
Example of the Appendix. However, we suspect that Theorem 1.2 does not
hold in general without condition (1.27) or some other alternative con-
dition. Theorem 2.3 is a variant of Theorem 1.2, where condition (1.27) is
replaced by a condition concerning the divergence rate of (1.25b) [see con-
dition (2.11)]. Condition (1.27) alone [i.e., without condition (1.25)]
implies (see Proposition 2.1) that the limiting vector 7; is, in a sense, an
asymptotic equilibrium vector for the nonstationary Markov chain. It
would be interesting to know wether the physically reasonable result of
Proposition 2.1 holds under a more natural condition than (1.27).

Our next result ammounts to an ergodic theorem for nonstationary
Markov chains: Let f be a function of the Markov chain {X}. We set

YW% (X (1.30)

and denote by E,{‘} expectation values in the nonstationary Markov
chain with transition probabilities (1.2) and with initial probability vector
a.

Theorem 1.3. Let p{/~"" be the one-step transition probabilities of
a discrete-time, nonstationary, finite Markov chain with a unique invariant
probability vector n(t). Assume that p{/~'" converges to p; as t — +co.
Assume further that either (i) P = (p,) has a single ergodic aperiodic com-
ponent and possibly transient states, or (ii) P has two ergodic components
and possibly transient states, and PU~"" satisfies (1.22) and lim, , , ., =(¢)
exists (call it 7), or (iii) P has the form (1.5) with m >2, and P"~ 19 satisfy
(1.25), and (1.27). Then we have, for any probability vector o:

(a)
HT E YD}y =(f> (1.31a)

where

=3 fmn  fi=1(s) (131b)
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and

lim E, {(Ym—;ﬁniﬂ:o (1.32)

t—> +w

(b) Suppose that for some 0< e <1, the limit

wy= lim — Z (P —m, (1.33)

t— 4o

exists (and is finite), then

lim tl“sEa{Y(’)—Zﬂni}zz(riwyﬁ (1.34)
i ij

t— oo

Furthermore, if in addition to (1.33), we have

hm SUp 1 Z P —n| < +o0 for each i, j (1.35)

st=1
s<T

then (a) for e=0,

lim (E{(Y"—={f))}

t—

fo[ 8y~ mim)

t

) 1
+2n; m - Y (pY—m)
1= 40 b T2

§<T

+2 lim - Z (Zo‘kpgi)’”— )(p(”) J)] (1.36)

=+ s,t=1 k
§<T

and (b) for 0<e<1
lim ' E, {(Y"—<{f{)*}

f— +w

=S tim e 3 ()
iJ

5T=1
s<t

+2 lim —1——— Z (ZO’ p(os)—n>(pl(.;’f)—-7tj)} (1.37)

l—>+001 st=1
s<T
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This theorem is proven in Section 4. The limit (1.31) and (1.32)
together imply that Y is a consistent estimator of { /), ie., Y’ converges
in probability to {f): for every 6 >0

lim E,{|¥0—{f>>8}=0

{—> +©

This estimator is biased, and (1.34) gives the leading term in the large-¢
expression of the bias. A particular feature of Theorem 1.3 is that the
leading terms in both the bias (1.34) and the variance (1.37) may be of the
order t~'*¢ with £ >0, and both terms depend on the intial distribution o.
For stationary Markov chains the leading term of the variance is of order
t71, and is independent of ¢, while the leading term in the bias is of order
t~* or smaller, and, in general, it depends on ¢. For nonstationary Markov
chains the size of ¢ in (1.33) {and (1.35)] depends on two different effects:
(1) the rate of divergence of the series (1.22), or (1.25b), which control the
rate of the limit (1.23), and (ii) the rate of convergence of 7(z) to n as
t - +oo. The faster the series (1.22), (1.25b) diverge [i.e., the slower
d(1y+ (1), and C,(t,) go to zero as f — 400, v— +o0, respectively ] the
faster the limit (1.23) [or (1.26)] is achieved. In turn, the faster the limits
(1.23) [or (1.26)] and (1.28) are attained, the faster the limit (1.29) is
attained and the smaller the ¢ is. In the annecaling algorithm the two effects
are competitive: The series (1.22) [or (1.25b)] diverges fast if the tem-
perature T(t) goes to zero slowly. On the other hand, n(t) converges to n
fast if T(¢) goes to zero slowly. Thus the first effect requires that as
t—- 4+, T(t}) = C+d,/logt for some &, >0, where C is the constant we
mentioned in the beginning of this Introduction. This corresponds to the
“adiabatic” effect we mentioned before. On the other hand, n(z) converges
to 7 like exp{ — [1/T(¢)](U,— U,)} where U, is the energy of the ground
state(s), and U, the nergy of the next excited state(s). Thus the second
effect above requires that T(¢) <(U,— U, — §,)/log t as t - +co, with some
0, >0. This corresponds to the “super-cooling” effect we mentioned before.
However, only in very spcial circumstances do we have C < U, — U,. Thus
in general it is impossible to choose the annealing schedule 77(z) so that the
limits (1.33) and (1.35) exist with ¢ =0. Hence the mean-square error, ie.,
(bias)* + variance, can be minimized by choosing 7(¢)= C/logt, where
C+d<C<C+¢ for some 0<§<¥, and C the optimal constant (see
Theorem 1.4 below).

Dobrushin has established Ref. 6° a central limit theorem (CLT) for

3 We thank again the referee who pointed out Dobrushin’s work.
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nonstationary Markov chains. For the annealing algorithm, his results
yield that the CLT (with a normal limiting distribution) holds if

T(2) large ¢ (1.38)

2—’

log ¢
where C is the constant above [actually Dobrushin’s results yeild a little
bit better than (1.38)]. We suspect that for the annealing algorithm, the
result can be improved so that (1.38) holds without the factor 3.

We end this Introduction by stating our convergence theorem for the
annealing algorithm in a nonstationary version of the sampling method of
Metropolis er al."” Let Q =(g,) be the transition matrix of an arbitrary
symmetric (i.€., ¢;=g;) and irreducible Markov chain; we refer to Q as the
“proposal matrix.” Let

U,=U(s,)), j=1.,nU;>0

be the energies associated with the states sy,..., 5,. We define a time-depen-
dent positive probability vector on the states by

e PO

W, j= 1,...,n (139)

n(t)=

where 0 < B(¢)=1/T(t) < +o0. Here T(¢) is the temperature of the system
at time #. (We use units in which Boltzmann’s constant is 1.) We order the
states to that

U1<U2<U2< SU,’

Following Metropolis et al,"” we define the one-step transition
probabilities of a nonstationary Markov chain by

i#j, pY="" =g, min{l, e~ FOi- I}

(4, it U<U, (1.40a)
- qije—ﬁ(l)(uj*Ui)’ if U>U,
pi—t=1-— 2 pf.j’*lv')
JEi
=1- Y g,— ¥ g e POU-U (140b)
JEi i
Ui U; Uj> U;

=¢g;+ Z qij(l _e*ﬁ(t)(l/jful))

JiUp> U
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It is easily verified that n(¢) is an invariant probability vector of the matrix
PU—19 defined by (1.40). In fact PY~9 satisfies the detailed balance
(reversibility) condition

n1) py— 0 =m0 plf O (141)
Clearly (1.41) implies (1.7a). We choose the proposal matrix Q so that n(z)
[defined by (1.39)] is the only invariant probability vector of P~ Now
assume that lim,_ . p(t)=p8, exists. The case f, < +oo is in most
respects trivial compared with the case f, = +oo. Here we consider only
the case i, = +o0. It is easily verifid that

1' (HI‘IJ): s 1.42
i Py =py (1422
where
oo _ f4s it U;<U;
l#]z Pu {O, if Uj> Ul- (142b)
pi=1— z q; (1.42¢)
JEi
Uy Uy
Furthermore,
1 _
. . (1)
O if jeS
lim =(t)=mn= (1.43)
t— +o0
0, if jeSW

where SV denotes the set of ground states (i.e., the states of energy U,)
and |SY| the number of ground states. If the proposal matrix Q is such
that the limiting matrix P defined by (1.42) has m > 2 (irreducible) ergodic
components, then we reorder the states so that P takes the form (1.5). We
denote by S, 8" the ergodic states corresponding to the matrices
SW ., 8 of (1.5), and by R the transient states. Our assumptions on the
matrix PY~ 1" imply that starting from any state 7, any other state j can be
reached via a finite chain

Aisii=ly=li—>hL—= =l —j=1 (1.44)
of allowable transitions (ie., g, ;_,>0). We denote by {4, .} all possible
finite chains of the form (1.44), and define

k
E;= min Y max{0, Uv,—U,_} (1.45)

ij} a=1

E=max E; (1.46)
L
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Let
EYEEf(”’ﬁ:iI?;(I}) Ej;, y=1.,m (1.47a)
jeR
and
E=min E, (1.48a)
7

Clearly E < E. We will see that the constants £ and E control the rate at
which B(7) is allowed to tend to infinity as - +c0. In a more general sam-
pling method which we introduce in Section 5, the proposal matrix Q is not
symmetric [see (5.7) and (5.8)], and the corresponding constant E is
defined as follows: Let

wa =Egzon= m}({% Eij’ y#EY (1.47b)
e st
then
E=min{min E,, min E,, } (1.48b)
b 7Y

Here is our theorem concerning the convergence of the annealing algorithm
for the nonstationary Metropolis sampling (1.40).

Theorem 1.4. Let PY ") be the one-step transition probabilities
matrix defined by (1.40). Assume that the proposal matrix Q is chosen so
that n(¢) [defined by (1.39)] is the unique invariant probability vector of
PU—10 Assuming B(t) - +oo0 as t — 400, we have the following: (1) If the
proposal matrix Q is such that the limiting matrix P given by (1.42) has a
single ergodic aperiodic component and possibly a set of transient states,
then (1.29), (1.31), and (1.32) hold. Furthermore (i) if

B(t)= log t, for sufficiently large 7, some 6 >0  (1.49)
Uz“Ul
then we have (1.34) with ¢=0, and (1.36).
(i) If
1=0 4, t<p(t)<——2=1logt, for sufficiently large ¢ (1.50)
o U, et <PO < loe, ylarge ¢ (1.

with 0<d,<3d, <1, then (1.34) and (1.37) hold with some 0<d,<
e<d, <1
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(iil) If

p(t)= log ¢, for sufficiently large ¢ (1.51)

U,-U,
then we have (1.34) and (1.37) with the factor ¢~ ¢ replaced by (log ¢) .

(2) If the proposal matrix Q is such that P has two or more ergodic
aperiodic components and possibly a set of transient states, then there
exists an (optimal) constant C, [see (1.56) and remarks following it] such
that if

B(t)< Cylog ¢, for sufficiently large ¢ (1.52)

then }1.29), (1.31), and (1.32) hold, while if
B(1)=(Co+d)logt, as t— +oo, for some d>0 (1.53)

then (1.29) cannot hold. Furthermore, (a) if

1

Co<
0 UZle

and
(Co_s)logt<P(t)< Cylogt, for sufficiently large 7, some § >0 (1.54)
then we have (1.34) and (1.37) with some 0 <e < 1.

(by If
1
C

S

and
1+ N .
log r< (1)< (Cy—9)log ¢, sufficiently large ¢+ (1.55)
UZ_ Ul
with
1 _
5 :<C0““ U2 Ul
Uz"' Ul 1 + Uz_ Ul

then we have (1.34) with ¢=0, and (1.36).

If P has exactly two ergodic components, then Theorem 1.1 yields that
the optimal constant C, is given by

Co= (1.56)

L
E
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where E is defined by (1.48a). We conjecture that the optimal constant C,
is given by (1.56) even in the case when P has more than two ergodic com-
ponents. Part (2) of Theorem 1.4 holds if we replace C, by Co= E~! where
E is defined in (1.46). Of course, (b) does not occur in this case, since
E>U,—U,. Theorem 1.2 yields in general a worse constant than (1.56)
(see Section 5). Theorem 1.4 together with similar results for a general class
of sampling methods which include the Metropolis sampling method, as
well as results concerning multidimensional random Markov fields are
proven in Section 5.

2. DISCRETE NONSTATIONARY FINITE MARKOV CHAINS

Parts (1) and (2) of Theorem 1.2 are essentially Theorems V.3.2 and
V.4.3, respectively, of Ref. 11. The only difference between Theorem 1.2 and
the above theorems of Ref. 11, is that the quantity C,(¢,) in (1.25a) (ie.,
Dobrushin’s ergodic coefficient!) involves a fixed number N of one-step
transition matrices, while the number n,, ,—n; of one-step transition
matrices in the blocks of Theorem V.3.2 of Ref. 11 varies with j, and it may
go to infinity as j— +o0. The condition of Theorem V.3.2 of Ref 11 is
necessary and sufficient for weak ergodicity, while our condition (1.25b) is
only sufficient. However, condition (1.25b) is easier to verify in practice,
and covers the case of the annealing algorithm.

Here, we only outline the proof of Theorem 1.2, and present mainly
some technical estimates which are needed in the rest of the paper, and in
particular in the determination of the number ¢ in Theorem 1.3. Also,
because of its physical interpretation, we isolate (as we did in the first ver-
sion of the paper) Proposition 2.1.

The following lemma provides the basic estimate in the proof of
Theorem 1.2.

Lemma 2.1. Let Q=(g,) be a stochastic nxn matrix,
x=(X,,., X,) an n vector, and y = xQ. Let osc x denote the oscillation of a

vector x, ie.,
0SC X = max |x; — x;| = max x;, —min x;
ij i i

Then _
osc y<[1—-C(Q)] oscx (2.1)
where

C(Q)=min ¥, min(g;, 4., (222)

ik

1 n
=1 — 5 max > 19— i (2.2b)
Lk j=1
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Remark. This lemma was motivated by the proof of Theorem 4.1.3 of
Ref. 13. The constant 1— C(Q) is the best constant for estimate (2.1).
Lemma 2.1 is equivalent to Lemma V.2.4 of Ref. 11, and we refer to Ref. 11
for its proof.

Proof of (1.26). A straightforward repeated application of (2.1)
yields

max,k | p{e? — pio|
{

[(z—t0)/N]
<[] [1—=C(to)] max|plio+ L= @UNIN.D _ plio-+ [(=)/NIN0)|
. g g
ve1 ik

(2.3)

where [{] denotes the greatest integer smaller or equal to &. If (1 —1,)/N is
an integer then the last factor in (2.3) does not appear, otherwise, we
bound this factor by 2. Since

H [1-C,(t,)]=0 (2.4)

v=1

if and only if (1.25b) holds, estimate (2.3) yields (1.26).

If (1.27) holds, then the sequence {n,(#)}, j=1...,n, is a (bounded)
Cauchy sequence, and therefore the limit (1.28) exists. As we mentioned in
the Introduction, the following proposition says that (1.27) alone [ie.,
without condition (1.25)] implies that n = (n,,.., 7,) is an equilbrium vec-
tor “asymptotically.”

Proposition 2.1. 1If (1.28) holds then

lim sub Z (Z pioin,—mn;,| =0 (2.5)

e oo 20

Proof. A slight variation of the procedure in the proof of
Theorem V.4.3 of Ref. 11 yields

Z

lo t)TC

t—1

< ) z;nj(s)—nj(sﬂ):+Z|nj—nj(zo+1)|+Z|nj(t)_nj| (2.6)

s=t+1 j

This easily implies (2.5). ||
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Proof of Theorem 1.2:

S~ =3

J

2

Z (pP —n )p(tot) +Z P(to g, —

!

(pif = m)(max pip” — pjj*”)

+ L Ppon =,
i

<Y {(max plen — mln p ’0”)2|p(0 ) — g I}
; m
J

(10,8)
Py T

+ 2
j
Using ¥, n,=1=Y, p%), we obtain

Z|p(oz)_n | <2max}p“°’)—p(’°’)l +Z

J

This together with (1.26) and (2.5), yields (1.29).

From (1.10a) we see that: if p{>" has a limit as - +oo, and the limit

is independent of i, then lim, , ,, p{*=lim, , ,, a/’. We have also the
following theorem:

z p(l() l)n n

i

(2.7)

Theorem 2.1. Suppose that condition (1.25) holds. Furthermore,
suppose that the absolute probabilities «{” have a limit as ¢ - +oo, say,

lim «'=w;, j=1l..n (2.8)

t— 400
Then p{> has a limit as ¢ - +oo, and

lim p®=a;, j=L.,n (2.9)
t— 4o
Remark. The interesting feature of Theorem 2.1 is that it does not
require any condition analogous to (1.27). The proof of this theorem is-the
same as the proof of Theorem 1.2 once we establish

2. Py —a

i

Il

lim sup ) 0 (2.10)

0= +0 13y ;

This is obtained from (1.10b) in a straightforward manner.



Nonstationary Markov Chains and Annealing Algorithm 93

Next we prove a variant of Theorem 1.2 by replacing condition (1.27)
by condition (2.11) below.

Theorem 2.2. Suppose that P“~ " is as in Theorem 1.2, and that
(1.25) [but not (1.27)] holds. Furthermore, assume that the limit (1.28)
exists, and that

1+ Z ﬂ [1-Ct)]<C< 0 (2.11)

is bounde as, n - +o00, uniformly in 7,2 1. Then (1.29) holds.
Remark. This theorem is essentially Theorem V.4.4. of Ref. 11. Con-
dition (2.11) implies a result stronger than Proposition 2.1, i.e., it implies

lim )

= +o .
J

Y P{eim—m;

i

=0 (2.12)

for every 7,>0. Since the proof of (2.12) is not directly transparent from
the proof of Theorem V.4.4 of Ref. 11 because of the fixed number N in
(1.25a), we spell out the details:

Proof of (2.712). Let t,=1,, and consider

(fo,t0+ VN) .
2 pijo 0 )ni T,

4

)

J

<2
J

Z [Z pl(llb,t0+ (v— 1)N)ni + 7T1:| plg_to+ (v—1)N,to+ vN]

! i

YoAm—mltg+ (v—1)N+ 1]} pfor (= Do+
!

2

+ 3 Y mlto+ (v — )N+ 1] plio+ C= DN _ g (2.13)
J !

We use Lemma 2.1 to bound the first two terms, and obtain

¥ |3 pgpe oz,

; X

z

<[1-Cw)] Y

Z pl[jfo,t0+ (v— 1)N]ni — nj
i

+[1—=C(1e)] Y, —m;[ 1o+ (v—1)N + 1]

L

7

Zn,-[to+ (V=1)N+1] plt &= DNo+wN) _ g

2

(2.14)
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The last term is bounded by

Y2 mlto+ (v—1)N+ 1] plo+ NN _gq,

<Ylnlto+ (v—1)N+1]—x

+2 f; Yin Lo+ (v—1)N+2] -, (2.15)

s=2 j

This, together with (2.14), vields
Z Zp(totoJrvN),n ~7 [1 —-C (10)] Z Zp[zoto+(v l)N]TC

+2 z Simlto+ (v—1)N+5]—m,| (2.16)

s=1 7

y (1.28), given &> 0 there exists 4(¢) > 0 such that

Ylnfe)—ml<e,  for t=14(e) (2.17)

Taking ¢, large enough, iterating the first term in the right-hand side of
(2.16), and using (2.17) we obtain

)

J

(fo,00+ VN)gr .
Zpij n,— 7,

i

<Z

p(to to)n

+2Ne{1+ 3 Z [1—Ck(z0)]} (2.18)

I=1k=1

Using (1.25) and (2.11), we have from (2.18) for every £,>0

lim Y =0 (2.19)

o0 .
v oo

z p'(_jfo,to+vN)7ti_ 7,
Applying this with ¢, 7o+ 1, o+ 2,..., fo + N — 1, in place of f,, we obtain
(212). 1

Remark. Clearly (2.11) is satisfied if C,(t5) = C>0. This is the case
when the limit (1.4) exists, and the matrix P has a single ergodic com-
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ponent with aperiodic states, and possibly some transient states. Also, since
every stochastic matrix P with a single ergodic component has (Ref. 13,
Theorem 6.2.1] a wunique equilibrium distribution u, every subsequence
{n(t,)} converges, by (1.7a), as n > +oo to y, and therefore 7(¢) converges
to p as t » +oo. These facts provide, via Theorem 2.2, a proof of part (1)
of Theorem 1.1 (see also Theorem V.4.5 of Ref. 11) alternative to the one
given in the next section. This result holds even if the ergodic states of P
are periodic, provided that the limit in (1.17a) is taken in the sense that
Cesaro means (Ref. 13, p. 101).

We end this section by establishing a theorem concerning the rate at
which the limit (1.29) is attained. First, we observe that C,(z,) [see
(1.25a)], depends on 75+ vN only, ie., C,(i,)= C(t,+ vN).

Theorem 2.3. Suppose that the assumptions of part(2) of
Theorem 1.2 hold. Furthermore, suppose that m(t) converges
monotonically to 7; (for some js from above and the others from below).
Suppose that for sufficiently large ¢, we have

1_

C(z)>—7—", some 0<x <1 (2.20)
in(6) = =¥ |n,(t) - n <%, some 0<d<1, a=const (2.21)

J

Then for sufficiently large ¢
1 .

YIpP—m| <O (;1—-;>, ¢=min(x, J) (2.22)

J

FProof. Combining (2.7) with (2.3) and (2.6), and using the fact that
n,(t) converges monotonically to 7;, we obtain

L]
Z|p}.j0v’)—7rj|<2 11 [1~C(l)]+2]nj(to+1)—nj] (2.23)

I=1+N

The first term is estimated by using

L] L[]
[ n-co<eni- [ p-con} @2

and (2.20). The second term is estimated by (2.21). The two estimates
together easily yield (2.22).

Remark. 1f the limiting matrix p, has a single ergodic aperiodic com-
ponent, then by the remark below (2.19), the first term on the right-hand
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side of (2.23) converges to zero geometrically. Thus the rate of convergence
of p” to =; is determined only by the rate of convergence of m,() to 7;.

3. CONTINUOUS-TIME NONSTATIONARY MARKOV CHAINS

In this section we prove Theorem 1.1 and establish a consequence of
(1.12). Although in numerical simulations the time is always discrete, we
introduce in this section continuous-time Markov chains, and prove
Theorem 1.1 for such chains. The proof for discrete-time Markov chains is
similar. We outline the modifications needed at the end of this section.

The basic problem of the theory of continuous-time Markov chains
consists in finding all solutions of the Chapman-Kolmogorov identity (1.8)
subject to the constraints (1.9) and p{>” > 0.

Given a stochastic matrix p.(¢), t 20, i, j=1,.., n, we define a solution
of (1.8) and (1.9) via Kolmogorov’s system of “forward” differential
equations (Ref. 7, p. 472)

d n
—pp = () pe+ Y flD) () D, 1> 1 (3.1a)
[_

dt =
1 if i=j

o =< 1b
Py {o, it i) (3.1b)

where
F()=1—py2), J=1l.,n (3.2a)
S r(t) = py(t), fori#j, i, j=1,.,n (3.2b)
rit)=0 forall j=1,2,.,n (3.2¢)

Note that
O<rye),  Lry)=1 (3.3)
j
Setting

plot) — (pl(_jto,t))
P(1)=[py(1}]
equations (3.1) read

d
EP(to,l)zp(to,t)[_I_i_ P(1)] (3.4a)

plo =1 (3.4b)
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where I is the n x n identity matrix. Also setting

xO(t)= (pio7,.... pi") (3.5)

and denoting by e; the row vector with 1 in the ith entry and zero
everywhere else, Eq. (3.1) reads

@% =xO()[ =1+ P(t)] (3.62)
xD(0)=e, (3.6b)

Taking differences, we derive an equation for p{/*" — pi»?

% [xO(t) = x®(1)] = [x(2) = xO()][ - T+ P(1)] (3.7a)

xD(0)—x®(0)=e,— ¢, (3.7b)

Thus we are led to study the differential equation

x(2) = [xy(1)s x,(1)]
if%zx(t)[—]—kP(t)] (3.8)
subject to the conditions
x(1)=0, i=1l,.,n (3.9a)
x(0) = probability vector (3.9b)

or to some initial condition x(0) which satisfies [see (3.7b)]

f %,(0)=0 (3.10)

or to some general initial condition
x(0)=x, (3.11)

It is an easy consequence of a classical theorem in ordinary differential
equations'? that the system (3.8)~(3.10) has a unique solution [provided
that P(¢) has continuous coefficients ] for all 7 > 0. The same is true for the
systems (3.8), (3.10), and (3.8), (3.11). The problem we address here is the
large-time behavior of all solutions of (3.8), especially when x(¢) is a
probability vector [see (3.9)] or it satisfies (3.10).

822/39/1-2-7
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Proposition 3.1. Suppose that P(7) has continuous coefficients for
te [0, o0 ]. Suppose that

fim j Tr(I— P(s)) ds < + o0 (3.12)

t— +ow dg

Then P“? and its inverse (P©?)~' are uniformly bounded as t — + oo.
Furthermore, no non-identically zero solutions of (3.8) goes to zero as
t — +oo. In particular,

lim (PO — pl00)£0,  i#k

t— +w

Proof. Let
D(t)=det plon
Then by Theorem 7.3 of Ref. 2 we have from (3.4)

%D(l)zD(l)Tr(—I—F P(1)) (3.13a)

and therefore

D(1) = D(t,) exp [— j ds Tr(I— P(s))] —exp [— J ds Tr(I~ P(s))]
(3.13b)

By (3.12), D(¢) is nonzero as t— +oco. Therefore P(®” and (P®")~! are
uniformly bounded as 71— +co. Since P is a fundamental solution of
(3.8), this implies that no solution of this equation goes to zero as t —» 0.

For the continuous-time analog of Theorem 1.1, we interpret the
stochastic matrix P(z)= ]p,(¢t)] defined by (1.6) as the “infinitesimal
matrix” of the chain specified by (3.4). Also, in (1.20) and (1.22), we
replace the sums oer ¢ with integrals, i.e., for continuous-time chains con-
ditions (1.20) and (1.22) are replaced by

[+ 1d< +o0 (3.14)

and

Lm [o(t)+y(£)] dt= 40 (3.15)
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respectively. We write
P(t)y=P+ V(1) (3.16a)
as in (1.18), and
A= —I+P (3.16b)

If P is of the form (1.5) with m=1 (iec., it has a single ergodic aperiodic
component and n — r, transient states), then lim, _, (P¥), = y;, while if it is
of the form (1.5) with m=2 (ie., it has two ergodic aperiodic component
and n—r; —r, transient states) then

lim Pr=

k— +oo
IR M ) 0...0 ]

.......... Oty o OO0 000
0.t 0 J7A S i 0...0
0.0 4O 2 0...0

where z;,, y=1,2 j=r; +r,+1,.,n are defined by (1.15). We will need
some spectral properties of the matrix 4 = —I+ P. A, =0 is an eigenvalue
of 4, and by Theorem 2.1 of Ref. 12 (Vol. II, p. 4), the algebraic multiplicity
of 4,=0 is equal to the number m (here m=1 and m =2) of the ergodic
components of P. If the ergodic components of P are aperiodic (as we
assume here), then all other eigenvalues 4, ,..., 4, satisfy

Red, <0, i=m+1l,..n (3.18)
A +1)<l,  i=m+1l..,n (3.19)

Inequalities (3.18) and (3.19) are not true if the ergodic components of P
are periodic (see Theorem 3.1 of Ref. 12, Vol. II). By Jordan’s theorem
there exists a nonsingular » x » real matrix Q such that

A=07JQ (3.20)
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with

J= . (3.21)

where J, is an m x m zero matrix, J, is a diagonal matrix with diagonals
the eigenvalues 4,,, ;,..., 4, , », Whose algebraic and geometric multiplicities
are equal, and

lm+m1+i 1 0 0 0
0 )m+m1+i 1 0 0
J,'= ........................................ 5 i=2,---, { (322)
(0 Aot ooy 4.1 1
L R R R 0 j’m+m1+i

are m;xm;, i=2..,/ matrices corresponding to ecigenvalues whose
geometric multiplicity is smaller than their algebraic multiplicity. Clearly
m+m;+m,+ -+ +m;=n. Setting

y()=x()Q~" (3.23)
and
My=ov(nQ ! (3.24)
Eq. (3.8) becomes
dy ~
y7he y()J + y(t) V(1) (3.25)
which is equivalent to
$(0)=y(0)e + [ y(s) Pls)et = ds (3.26)
0
It follows from (3.21) that
e 0
tJy
e = o (3.27)
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where
1 0
u 1 : .
el = . = m X m unit matrix (3.28)
0 1
et)~m1~l 0
el = (3.29)
0 et;tm-#ml
- 2 tm'7 i ~
1 1 L
2! (m,—1)!
tmi7 2
0O 1 ¢t «-vieein L ——
—_2)
izt | (=20 oo 1 (3.30)
0 0 Q- 1 t
LO 0 0vreo o 1 J

Proof of Theorem 1.1 (Continuous-Time). (1) If P has a single
ergodic aperiodic component (m = 1), then the similarity matrix Q has the

form :
,u’(l) Au(ll )7"" Ju')(ql) 0’ 0
Q - q2 — 42, ---------- El an
qn /SRR Gn

q1+m1A :)“1+mIQI+m1
qm1+2A ZiWl]-{-quP'L]%vz

qm1+3A=qm1+2+Am1+2qm1+3

qm1+m2A =Qm1+m2A1 +/]Vm1+2qm1+mz

qm1+m2A =}'m1+3qm1+m2+1

an =qn—1 +/1m1+lqn

(3.31)

(3.32)
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The inverse matrix Q' reads

(1 0 0 0 )
: ry
1 0 0 -0
O t=(", 9, 2= : (3.33)
1 Zr1+1,2 Zzl+1$3 Zr1+1,n
Do : .- J n—ry
Ll Zn,Z Zn,3 Zn,n
This and (3.23) give
@) =xt)+ - x,(t)=1 (3.34)
Also, from x(¢)= y(¢)Q with Q given by (3.31), we have
x(=uPy () + Y v (O =L, (3.352)
=2
x{1)=Y v i=r;+1,.,n (3.35b)
j=2

Using (3.18), (3.27), the uniform boundedness of | y(¢){, and the fact that
P(t)=0V(1)Q~' -0 as t - +o0, we easily deduce from (3.26) that

lim p()=0, i=2,..,n (3.36)

t— +oo

This together with (3.34) and (3.35) yields

lim x(1)=p®

t—> +oo

This is equivalent [see (3.31)] to (1.17a) (continous time). The proof of
(1.17b) is obtained from the compactness of n(¢) and the uniqueness of u"
(Ref. 13, Theorem 6.2.1).

(2) If P has two ergodic components (m = 2), then

1 0
tJ():
¢ (0 1>
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The similarity matrix Q reads

ut pite, p® 0.0 0.0
u® 0.0 pP.,u? 0.0

o=l & 1=l oo 05 (3.37)
q, B G n

where the row vectors g;= (g, ¢ 1), i = 3,..., 1 satisfy equations similar to
those in (3.32). The inverse matrix Q ' reads

0 =(zW,., z") =

(1 0 0 0 )
{ 0 0 :
0 1 0
Do ry (3.38)
0 1 0 : 0
Zr1+72+1,1 Zr1+r2+1,2 Zrl+r2+l,3 Zr|+rz+1,n
. . . BN H—F —T)
_ Zn,l Zn,2 Zn,3 . Zn,n )

where z;,, y=1,2, j=r +r,+1,..,n are defined by (1.15) and satisfy
(1.16). Using (3.38) and (3.23) we find

yl(l):xl(t)+ +xr1(l)+xr1+r2+1(l)zr1+r2+1,1+ +Xn(t)zn,1 (3393)

yZ(z):xr[+1(z)+ +Xr1+rz(t)+xr1+r2+1(z)zr1+72+1,2+ +xn({)zn,2

(3.39b)
Hence
yilt)+ pat) = x () + - +x,(2) (3.40)
Also from (3.37), and x(z) = y(¢)Q, we obtain
x()=pP y()+ Y 1) g i=1,.,r; (3.41a)
j=3
Sl =D o)+ Y, $ O =l (341b)
j=3
x(1)= 3 v i=r 47+ L, n (341c)
j=3
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Next, Eq. (3.25) in terms of components reads

dy, _ 3 .
T IO+ 50 Pt + 3, 5,700 (342)
d

:; —J’1V12(t)+y2 sz(l)-l- Z y; ﬂ(t) (3.43)
%),—3:/13 Yit Z yi(t) V(1) (3.44a)

ji=1

d
;’—i3y,+v, 1+Zyj(t (D), i=4..m +2 (3.44b)

j=3

and similar equations for the y;s, i=m, +3,.., n. Since Re 4,<0, j=3,..
and P(1)=0V()Q ' >0 as t— +o, Egs. (3.44), and the 51m11ar
equations for the ys, i=m, +3,.., n, yield

lim y,(1)=0, i=3,..n (3.45)

l—> 400

independently of the initial data y(0).
Now using (1.6) and (3.38), a straightforward algebra gives

I’721(1)2 —1722(1)=¢(t) (3.46a)
Pialt) = — (1) = (1) (3.46b)
and
2 0 7a(0= = £ o) Vot =R (347)
Thus Eqgs. (3.42) and (3.43) become
D1 90 240 +900) y)+ RO) (3.482)
dyz - _
D2 _ (1) yulr)— B(t) ya(1)— R(1) (3.48b)

First we prove (1.21) and (1.23), assuming (3.14) and (3.15), respectively.
Let

x(£)=x(t) — x®(r)
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where  x9(¢), x®(r) are defined by (3.5) (£, =0). Then
x(t)+ -+ +x,(¢)=0, and by (3.40)

ya(t)= —y(2) (3.49)

Thus (3.48) are equivalent to

Lo 0+ ¥ 1= R(O) (3.50)

ya(t)= —y(1)

Hence
B0 = exp |~ [/ [406)+ )1 a5}
v [ Rsye{ - [ 0@ -1} s
0 s

If (3.14) holds, then (3.51) implies that lim, _, | y,(¢), lim,_, |, y,(¢) exist
and are different from zero. This together with (3.45), (3.41), and x(¢)=
x(t) — x¥)(¢) implies (1.21). On the other hand, if (3.15) holds, we will
show that

lim y(t)=— lim yp,(¢1)=0 (3.52)

t—> +o0 = +x0

Clearly the first term on the right-hand side of (3.51) goes to zero as
t— +oo. We now show that the second term also goes to zero. Set
t—s=r1. Then

U(,t ds R(s) exp { - f: [4(6)+(8)] d&})

-1

<[ wiru-orew |- 0+u) el
0

<L+°° dr |R(t—1)| exp {— f:_r [4(&)+y(&)] dé} (3.53)

Since Re 4;<0, j=3,..,n, Eqgs. (3.44) yield that |R(¢)| -0 as t— +0.
Therefore we can apply the dominated convergence theorem to the right-
hand side of (3.53), and deduce that it goes to zero as t— +oo. This
establishes (3.53), and yields (1.23).
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Next we prove (1.24) assuming (3.15) and the existence of
lim, , . n(z). We set x(¢)=(p®9,.., p¥1), i=1,.,n  Thus
x () + - +x,(2)=1, and by (3.40)

yi+y.(1)=1 (3.54)
Thus Egs. (3.48) become

@,
=L L0+ U] 3= (1) + R(1)
(3.55)

yalt)=1—y (1)
Hence

yi(t)=y.(0) exp {— fo [d(s) + ¥ (s)] a’s}
+ jo[ ds ¢(s) exp {— Lt [H(E) + ()] dé}

* ﬂ ds R(s) exp {— f: [4(8) + ()] dé} (3.56)

The existence of lim,_, | 7(¢) implies the existence of an 0 <y <1
such that
lim #(¢)=nya"+ (1 —n)u? (3.57)

t— +oo

We will show below that the existence of lim, , . #(¢) implies that
lim, , , . [&(2)/é(t)+ ¥(2)] exists, and in fact that

: ¢(1)
lim ————=y (3.58)
1~ +eo (1) +Y(1)
Assuming this for a moment, we complete the proof of (1.24). We will show
lim py,()=1— lim y,(t)=pn (3.59)
t— +oo t— +oo

This together with (3.45) and (3.41) quickly yield (1.24). We now prove
(3.59), The first term on the right-hand side of (3.56) clearly goes to zero as
t = +o00. By the argument given for (3.53), so does the third term in (3.56).
We will show that

im_ [ asgorem |~ (0@ 1@} =n (60

1= +oo
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Since ¢(1) >0, we may change variables by setting
dz=¢(&) dE
T={ (s ds
0

Thus

0= assrexn |- [ 1)+ |

N P [_ [ HECD + y(Etz)
0

= d 61
e B (3.61a)

By (3.15), T— +o0 as t —» +oo. First, we assume # >0, and set

P(&(2)) +¥(E(2)) _1
$(&(2)) n

h(z})—>0 as z— +®©

+ h(z)

Thus

T T
I(I)J dv e— (T o= [Th(z)dz
0

T T
:f de e~ o hiz)dz
o

@ T
=’1_j+ d‘ce—(l/n)f‘f'j dr e~ W[l hd_ 1] (361b)
T 0

The second term on the right-hand side of (3.61b) goes to zero as
T — +co. The third term is bounded in absolute value by

+ oo T
.[ dr |~ IT-<h2)dz _ 1| = Um)e (3.62)
0

Since A(z)=1-—1/y, we see that the integrand in (3.62) is bounded
uniformly in T by an intergrable function. Thus the dominated convergence
theorem is applicable, and it yields that (3.62) goes to zero as T — +oo0.
Thus, by (3.61b), I(t) —»n as t - +oo. If #=0, then (3.61a) easily yields
I(t)—> 0 as t » +o0. Thus we have established (3.59). Hence the proof of
Theorem 1.1 will be completed once we establish (3.58).
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Let
o(t)=n(t)Q " (3.63)

Since n(¢)[ —I+ P(t)] =0, we have
o(1)J +a(t) (1) =0 (3.64)

where () is defined by (3.24). Using the special form of (3.38), we obtain
from (3.63)

Ul(l):nl(t)-l— +nrl(t)+nr1+r2+1(t)zr1+r2+l,1+ +nn(t)zn,l
GZ(I):nr1+l(t)+ +nr1+r2([)+nr1+r2+1(t)zr1+r2+1,2+ +Tcn(t)zn,2

0 ) =Tt i Zp p it T (D2, I=3n
Thus
a()+o,(t)=1 (3.65)
and by (3.57)

lim o,(z)=1— lim o,(t)=y (3.66)
t— o0 £ +00
and
lim o4t)=0, i=3,.,n (3.67)
t— +oo

Equation (3.64) in terms of coordinates reads

o Vu+a P+ Y Uj~j1:0 (3.68a)
ji=3

o Vp+6:,Vyu+ Y 0,7,=0 (3.68b)
j=3

Y oJ+ V)40, V+06,Vy=0, i=3..n (3.68¢c)

j=3

Using (3.46) and (3.65), Eqgs. (3.68a, b) become

SN
(1) l//(t)“Lj; D+ v () (3.69)
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We note that the (n—2) x (n —2) matrix
B=B(t)=(J;+ V), i j=3..n
is nonsingular for sufficiently large ¢. Therefore (3.68¢) gives
(0333 0,)=[01(Vy3~ V13) = Vg 01(Voy = V1) = P2, 1 B7H2)  (3.70)
This and (3.69) yield

(=20
ST 1) )
- N o 71
+¢(l)+|//(t) lo(Vys— V)= Viospon 0,(Vo— V)= 7, 1B :
(3.71)

Since 7(1)—0 as t— 4o0, the matrices B(¢) and B~(¢) are uniformly
bounded as ¢ — +co. Using this, the special form (3.38) of 0%, the fact
that ¥(1)— 0 as t— +oo, and the explicit form of &(t) + (1), it is easily
seen that the second term in (3.71) goes to zero as ¢t — +oo, if (3.15) holds.
Thus the first term on the right-hand side of (3.71) has a limit and

W a4(1)

lim =
- +w ¢(l)+!//(l) 1 4w
This established (3.58), and completes the proof of the theorem.

The following theorem is related to the rate of convergence of (1.33)
and (1.35). It should be compared with Theorem 2.3. We state the result for
continuous-time Markov chains, but it holds also for discrete-time Markov
chains.

Theorem 3.1. Let P(¢)=[p,(r)] be the infinitesimal matrix of a
continuous-time, nonstationary finite Markov chain converging to P = ( Di)
as 1 — +c0. Assuming that P(¢) has a unique invariant probability vector
7(¢), then (1) if P bas a single ergodic aperiodic component and a set of
transient states, the rate of convergence of

Y Ipet—m) >0 as 1- +ow (3.72)
=t

for any fixed ¢, is the same as the rate of convergence of

Y lnt)—mi =0 as t— 4oo (3.73)
j=1
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(2) If P has the form (1.5) with m =2, and assume the conditions of
Theorem 1.1 which ensure (1.24), then the rate of convergence of (3.72)
depends on the rate of divergence of (3.15), and the rate of convergence of
(3.73). In particular, if

1—
o(t)+ (1) >—t—-’£, for sufficiently large 1, 0 <k < 1 (3.74)
and

In(f)— 7| S ——,  forsufficiently large 7, 0 <5 <1  (3.75)
ll ]

then

n C .
Y, Ipiel —m)| <F’ e=min(k, §), large ¢ (3.76)
j=1

Proof. (1) From (3.35), we see that the rate of convergence of pﬁj’o’”
to 7; is the same as the rate at which y/¢), /=2,.,n tend to zero as
t— 4o [note that y,(1)=1]. Now from (3.25), w(t)=[y,(£), yu(2)]
satisfies

fl%qu(z) B()+ (Vi3 Vizss V1) (3.77)

where

[B(1)],=J,+ 7 i, j=2,3,n (3.78)

i
and the diagonals of (J;), i, j=2,.., n satisfy (3.18). The equation

n(t)[ -1+ P(t)]=0
in terms of o(¢) =n(¢)Q ~! reads

o()J+a(t) P(1)=0 (3.79)
Using the fact that J,=0, and ¢,(¢t)=1, Eq. (3.79) becomes

() B(t) +(V 12, Vi3 V1,,) =0 (3.80a)
p(t)=Lo,(1),...., 0,(1)] (3.80b)

Comparing (3.77) and (3.80), we readily see that the rate of convergence of
both (3.72) and (3.73) is the same as the rate of convergence to zero of

P+ + 1 7,,()] (3.81)



Nonstationary Markov Chains and Annealing Algorithm 111

(2) From (3.41) we see that the rate of convergence to zero of (3.72)
is the same as the rate of convergence of y,(f)—#n, y,(t)—1—#, and
yAt) =0, [=3,.., n. Also, from the equations below (3.64), we see that the
rate of (3.73) is the same as the rate of convergence of o,(¢)— 4,
o,(t)>1—n, and o,t)—>0, /=3,.,n Now, Egs. (368c) and (3.69),
together with (3.75), yield

I
ﬂ)— =n+0 (—l—lfg>, sufficiently large ¢ (3.82)

¢(1) + (1)

Using (3.56) [and the representation (3.61b)], a straightforward estimation
implies that (3.74) and (3.82) give

{y.(t)—n| =O<%>, as t— +o0, e=min(k, J) (3.83)

Equations (3.44), etc., may be written in the compact form

dow ~ ~ ~ -
E‘:w(l) Bty + (31 Vis+ y2Vosss viVin+ ¥2V2,) (3.84)

where B(¢) is defined above (3.70). From (3.84) and (3.68¢c) we sec that the
rate at which |w(f)] >0 is the same as the rate at which
fos(2)| + - +]o,(1)] =0, ie., the same as in (3.75). This completes the
proof of the theorem. |

Remark. As we mentioned in the Introduction, we no not know
whether there is a theorem similar to Theorem 1.1 when P has m>3
ergodic components. In this case there are obvious generalizations of (3.37)
and (3.38), which yield the following extension of (3.42) and (4.43):

dy - ~ -~ " -
ELZY1V11+Y2V21+ +yme1+, Z IJ’jle
=m+
..................................... SO (3.85)
dy,, - ~ i ~
?:ylVlm-F_’_ymem—'_ Z yjI/jm
Jj=m+1

and equations for y,, j=m+ 1,.., n similar to (3.44), etc. Also we have the
generalization of (3.40)

WO+ 4y () =x () + - +x,(1) (3.86)
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The generalization of (3.15) here is

[ P4 P ) 4+ 4+ Pt

— V()= _Vm—l,mwl(t)}dt: +0o0 (3.87)

It can be shown that the integrand in (3.87) is positive. We do not know
whether (3.87) suffices to control the asymptotic behavior of (3.85) and of
the remaining equations for y,, j=m+1,.., n.

The proof of Theorem 1.1 for discrete-time Markov chains is similar to
the proof given above for continuous-time Markov chains. The basic dif-
ferential equations (3.4) and (3.8) for continuous-time Markov chains are
replaced by the following difference equations. Let us denote the one-step
transition matrix P~ by P(¢). Then by definition

plof = plot=D p(r),  for ty<t
which implies the analog of (3.13a),

D(t)=D(t—1)d(r) (3.88)
where

D(t)=det P, d(1)=det P(1)

Also introducing the vector x(¢) as in (3.5), the Chapman-Kolmogorov
identity (1.8) leads to the study of the difference equation

x(r)=x(t—1) P(t) (3.89)

subject to the initial conditions (3.9) or (3.10) or (3.11). Our study of
equation (3.8) may be used to study the difference equation (3.89). The
necessary changes are straightforward and we do not spell them out here.
[Our analysis of the example treated in the Appendix is based on the dif-
ference equation (3.89).]

4. THE LAW OF LARGE NUMBERS AND THE VARIANCE
OF A BIASED ESTIMATOR

In this section we prove Theorem 1.3.
Proof of Theorem 1.3. Let

1 if XW=s,

H(XT =s1) {0 it x® £,
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then

1 g 1 .
YO=— Y fX) =23 Y a0 =s)

s=1

Using this representation we compute

1 1
EAY-Tfm{ =% 17 ¥ B =5) =)

1 t
~Shi7 % (Sewr =)
1 (0.)
~Zf0k Z (pi” —m;) (4.1)
s=1
Since p{> —n; — 0, its Cesaro means also converges to zero, ie.,

1 £
p Y (P —m)—-0 as f— 400 (4.2)

This yields (1.31). Also if the limit (1.33) exists, Eq. (4.1) easily gives (1.34).
New we prove (1.32)

o ()|
e (54 oo

1 1
== X LSLEADXY =5) = m]lx(X P =s)— ]}

st=1 4

2fo, Z [E, {x(X® =5) f(X® =5))} =, E, { (X =5,)}

5T=1

— E {x(XP=5)} +n.7,]
Note that
E (x(X®=5)}=3 0, p”
%

Za pIpise) if s<=z
E{7(X¥ =5) (XD =s))} = Z o pOpEY i s>t
k

Y. 0 P26, if s=t
x

822/39/1-2-8
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w{(r-zm)]

ZZf,f, {Z Ok Z pEop “’+Zo Y. pepe)

§<T §>T

—tm; ZO'k Z pO9) — tm; Zak z po

s=1 s=1

+Zak Z p994, 4+t27tinj}

s=1

Therefore

1
k2

=§f,.fj{2§a

4
> () pip
§<<T

t

1
Yot X (ol - )
k

s=1

1
+7zf7k Z (P —m) 6y

s=1

1 4
+21n72(1’(”)—”)+ (0, — 11)}

s>T

t H

1
=_Zfifj{22‘7k; Y [(Pk,s)—”)‘i‘ Y (P(”)_“j)}

s=1 T=s5+1

1
+27er(fk Z —(p“”)— B

s~1

—2n; Zok Z(p“”) ;)

s~1

+Toug|7 % (o =m)5,]
1 1 <
R AR

s=1 T=s5+1

~

+%(n,-5,-j—7tinj)} (4.3)

For fixed s, we have p{»” —n; -0 as © — +oo. Therefore, for fixed s, we

have
t

1
? Y (p—m)=-0 as t— 400 (4.4)

T=s54+1
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This together with (4.2) imply that each term on the right-hand side of
(4.3) goes to zero as t — +oo. This proves (1.32). Next, multiplying both
sides of (4.3) by ' ~* we get

)

=§ﬁﬁ{

(P& —m)(p§” —m))

s=lr=5+1

1l S i—=s
+27tjzak_g Y _I_(P;ci’s)_ni)

k z s=1
1 t
-‘27-6 Zak & Z (P(OS) z)
s=1
! [ (0.8)
+ngt1+5 Z (pl —nl)éy
k s=1

t t 1
—271,-{1“2 Y (pfj”——n)«l— (,5ij~n,nj)} (4.4)

also exists as 1 — +co, and is equal to w,,. Therefore the second and third
terms in the right-hand side of (4.4) cancel in the limit  — +o0. The fourth
term goes to zero by (4.2). If the limit (1.35) exists, then the fifth and the
first terms above also have limits as 1 — +co. Thus in the limit ¢t - 400,
we obtain (1.37) if >0, and (1.36) if ¢ =0.

Theorem 4.1. Let p{/~ " be as in Theorem 1.3. Then we have the
following:

(1) If P has a single ergodic component and possibly transient states,
then if the series

S ns) - ) (45)

s=1 j
converges as t - +o0, then so does the series

t

Z |pO) — ) (4.6)
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Furthermore, il the series (4.5) diverges, then the series (4.6) diverges no
faster than the series (4.5).

(2) Suppose that P has two or more ergodic components, and that
n,(1) converges monotonically to ;. Then (a) if the series

i fl [1-C)] (4.7)

s=11[1=1
converges as t — +00, then the series (4.6) diverges no faster than the series
(4.5); (b) if
1—x

C(t)= — large ¢, some 0 <k <1 (4.8)

and
|7r(t)—nl<?a~—5, forlarge , 0<d <1 (4.9)

then the series (4.6) diverges no faster than O(¢°) with & = min(x, J).

Remark. If P has exactly two ergodic components, then (4.7) and
(4.8) may be replaced by [compare with (1.22)]

Y exp {— 5 [¢(r)+w(r>]} (47
s=1 =1

and
HO)+ 90>~ 48)

respectively.

Proof of Theorem 4.71. Part (1) of the theorem is a consequence of
the Remark following the proof of Theorem 2.3, or part (1) of Theorem 3.1.
Part (2) is a consequence of Theorem 2.3, or part (2) of Theorem 3.1.

5. CONVERGENCE OF THE ANNEALING ALGORITHM

In this section we prove Theorem 1.4, and establish a similar result for
a class of nonstationary sampling methods which include the Metropolis
method (1.40). We also consider a sampling mthod for multidimensional
Random Markov Fields.
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Proof of Theorem 1.4. (1) The validity of (1.29), (1.31), and (1.32) is
a consequence of part (1) of Theorem 1.1. From (1.39), we see that

|7(t) — 7| = e AWY=D) 4 (lower-order terms), as 1— +oo (5.1)

This and Theorem 4.1 imply the assertions in (i), (ii), (iii) of the theorem.

(2) If P has exactly two ergodic components, then part (2} of the
present theorem is a consequence of part (2) of Theorem 1.1 and part (2) of
Theorem 4.1. The constant C, is given by (1.56). If P has more than two
ergodic components, then the validity of (1.29), (1.31), and (1.32) is a con-
sequence of Theorem 1.2. Now we observe that 7(¢) converges to m;
monotonically as ¢ — +oo. Indeed, if je '), then one easily sees that 7(7)
is strictly increasing in B(z) for all f(z) >0, while if j¢ S’ then there exists
a sufficiently large B, such that 7 (¢) is strictly decreasing in § for all § > f,.
This together with part (2) of Theorem 4.1 yields the rest of the theorem.

As we mentioned in the Introduction, Theorem 1.2 gives, in general, a
worse constant than Theorem 1.1. We exhibit this is some explicit exam-
ples. First, consider the case with three states s,, s,, 55 such that

U <U,<U,

and ¢,, = ¢,; = 0. The matrix P~ " reads

1__qme—ﬂ(U3~U1) 0 q13€*ﬁ(U34U1)
PU—1L0 0 1— qme*ﬁ(UJA U2) qZSe*ﬁ(Us— Uz) (52)
31 qs3; l1—g31—qm

In order n(f) to be a unigue invariant probability vector we must have
g3 #0, g3, #0. A straightforward computation gives

E=U,-U, (53a)
E=U,—U, (5.3b)

Thus E> E and Cy< C,. Now we consider four states such that

U, <U,<U;<U, (5.4a)
431=43=0 (5.4b)
qlz?éo (54C)

Since q,, #0, the state s, [in P(c0)] is transient. A straightforward com-
putation shows that n(r) is the only probability vector of P“~ % if and
only if g5, #0. In this case [assuming (5.4)], the state s; is absorbing, and
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the state s, is transient. Reordering the states so that P has the form (1.5),
the matrix PV~ " reads

PlLn =
1,qlze7/3(U24U1)4q24e*/1(UrU1) 0 qlzeglf(UrUl) qu‘ﬂ(U‘rUl)
0 14q34e*5(U47U3) 0 q34e\ﬂ(UrU3)
9 0 I~gay—gage U9 gy = PUm 0D
q41 943 42 1-Ga1~qa2-943

(5.5)
A straightforward computation gives
E=U,-U,
E=m1n(U2- U15 U4_ U3)
Thus we have again £> E and C, < C,,.
Next we introduce a class of nonstationary sampling methods which
contain the two most common methods used in statistical mechanics, i.e.,
the metropolis and the “heat-bath” sampling methods. The stationary ver-

sions of our sampling models appear in Ref. 10. Let f(x) be a smooth
function defined in the interval [0, 1] such that

S&x)

0< <1, for 0<x<1 (5.6a)
1+x
lim f(x)=1 (5.6b)
x -0+

Let Q= (g;) be the transition matrix of an arbitrary irreducible Markoy
chain. Here Q is not necessarily symmetric. We shall again refer to Q as the
“proposal matrix.” Let n(f) be defined by (1.39). We define a
generalization of (1.40) by

q“f(min{(qij/qji)[ni(t)/nj(t)]a (qji/qu)[nj(t)/ni([)] })

. . (-z—rl,t):
[ ], Pu 1+ (qij/qji)[ni([)/nj(t)]

(5.72)

PY=10=1-Y Py-1to (5.7b)

Jj#i

For f(x)=1+ x, we obtain an extension of (1.40) with a nonsymmetric
proposal matrix Q:
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g0 it sy un s
ij =
i#j, PY-10= Ty (5.82)
geePow-vy e L opow- vy g
J qu
P{-t0=1-Y Py-to (5.8b)
JiEi
For f{x)=1, we obtain
Al
l#:], Pl('jlil,t)ZQi/ q]z j( ) (59)

qij”i(ﬂ‘*‘%ﬂj(’)

For a symmetric, g, = g,,, proposal matrix, (5.9) is the heat-bath model

(1)

S PU—L—p IV 5.10
17{:]; ij q; Hf(l)-f-ﬂj(l) ( a)
Py-t=1—% pu-1tn (5.10b)
j#i

Choosing f(x)=142({x)’, y>1, we obtain a sampling method which
interpolates between (5.9) for y= +oo, and (5.8) for y=1.

Theorem 1.4 holds for the nonstationary Markov chain defined by
(5.7). The proof of the theorem in this case is the same as before, and we
will not spell out the details.

Next we consider briefly sampling methods for multidimensional
Markov random fields. First we recall the definition® of a Markov ran-
dom field (MRF) on a finite square lattice Z¢, with M =m? sites. A set

0={0,cZ%:aez}

of subsets 0, of Z¢, is said to be a neighborhood system if: (a) ae0,, (b)
a€0,if and only if be0,. A subset C< Z¢ is a clique if every pair of dis-
tinct sites in C are neighbors. The set of all cliques will be denoted by 4.
With each site ae Z2 we will associate a “spin” s, with values in the spin
state space

§={0,1,.,J—1} (5.11)
The set of all possible configurations
Q={5=(81, 52, Ss): 5,€S, a=1,.., M} (5.12)

will be referred to as the state space. A potential Vo(s) associated with a cli-
que Ce ¥, is a function on the state space £, which depends only on those
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coordinates s, of s for which ae C. The energy function is a function on Q
defined by

Uls)= ). Vcls) (3.13)

Ce®

The probability measure on Q

e BNU(s)
n(s)= ~ (5.14a)
Z=Y e f0v6) (5.14b)
se2

at temperature 7(¢)=1/p(t), is called the Gibbs distribution relative to the
neighborhood system 0. Finally we shall use the conditional probabilities
defined by

O(s,]5,, b#a)= n(s) _ 0 515
T (s, 55, a —m, 5= (8,0 Spy) € (5.15)

It is easily seen that the right-hand side of (5.15) depends on s, and on s,
with be0,. The Gibbs distribution (5.14) relative to the neighborhood
system O defines a Markov random field (MRF) X relative to 0, ie, a
family of random variables X'= {X,, ae Z4}, which satisfies (relative to
some probability measure P on Q)

PX=s5)>0 forall seQ (5.16a)
P(X,=s,|X,=55, b#a)=P(X,=x,|X,=5,,b€0,) (5.16b)
for every aeZ?, s=(s,.,5,(€Q. Equation (5.16b) is the Markov
property of the MRF. It is well known"*® that every MRF, X, relative to

0 [ie., a set of random variables X = {X,, ae Z%} satisfying (5.16)] comes
from a Gibbs distribution =(s) relative to 0, and in fact

n(s)=P(X =s)
We note that the total number of states (configurations) is
n=|Q|=JM, M=m (5.17)

We will now define sampling methods via Markov chains
X ={X¥,., X{)} on the state (configuration) space 2. Here each X is a
Markov chain associated with site ae Z¢. There are at least three ways to
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define a Markov chain'? associated with the MRF defined by the Gibbs
distribution (5.14):

(1) X D=0 =(s0,.,s) and XV =sV=(s{),..,s{)) have all
coordinates different.

(2) X¢ V=59 and X" =5 differ only at a single site randomly
chosen among the M sites of Z¢,.

(3) XU V=59 and X =5 differ only at a single site, the site
being selected from a fixed rather than random sequence.

Our basic convergence Theorem 1.4 can be adopted to handle any one
of the above procedures. But we shall restrict ourselves in giving only the
generalization of (1.40) and (5.10) to method (2). Let g(a), ae Z4, be an
arbitrary strictly positive probability measure defined in Z%. Suppose that
at time ¢ — 1, we have X~V =50 =(s{1...,, s{). Choose a site y,€ Z% from
the distribution g(a), and change the spin at the site 7,. Let s be the new
site. Then in analogy with (1.40) we define the transition probability

i#], P(X(t):SU)XX(HI):S(i))

) {q(v,) U <)
= gr) expl —BOUG) - UED),  if U > U@y 1Y)
and in analogy with (5.10)
P(X(l) — S(j) | X(f -1y _ S(i))
exp{ —B(OLU(sY)— U(s'")]1} (5.19)

=10 exp = BOLUGO) — OG)])

Without spelling out the details, we note that Theorem 1.4 applies to the
Markov chains defined by (5.16) and (5.17).

Next we note that if the spin state space S [see (5.12)] has only two
states, i.e., J =2, then the right-hand side of (5.17) is equal to

q(y ) (P s, a#y,)

where the conditional probability is defined by (5.15). This leads to the
following generalization of the “heat-bath” sampling method (5.17): Let
g(a) be as above, and suppose that s = (s{/,..., s¢), s = (s{),..., s{2) differ
only on one site y, chosen from the distribution g(a). Then

P(X10 =5 X0 = 50) = g(y,) m (s |59 =50, a#y,)  (5.10)
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defines a Markov chain. With trivial modifications Theorem 1.4 applies to
this Markov chain. The Markov chain (5.18) with a deterministic sequence
{y,} has been treated in the appendix of Ref. 8.
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APPENDIX

In this appendix we present an example with two absorbing states. The
example illustrates various aspcts of nonstationary Markov chains with
phase transitions. In particular, it clarifies the questions we posed in the
Introduction [above (1.11)], and it illustrates the criticality of conditions
(1.22) and (1.25).

We will denote the discrete time by n=0, 1, 2,.... The one-step trans-
ition matrix is

wo1m_ (1—8&n)  g(n)
pe=( ) (A1
where
0<f(n)<1 (A2)
0<g(n)<1 (A3)
,Jim f(n)=nlingw g(n)=0 (A4)

The limiting matrix is

0

and it defines a Markov chain with two absorbing states. Any equilibrium
probability distribution of P is a convex combination of

:u(l) = (la 0)

A5
w2)=1(0, 1) (A
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The unique invariant probability vector of P"~ 5 is

f(n) g(n)
(n) _
" L(”)*‘g(”)’f(n)ng(n):l (A6)

We readily see that no matter how fast f(n) and g(n) converge to zero, '™
has no limit as n - +o0 unless f(n)/g(n) [or g(n)/f(n)] has a limit.

Lemma A.1. For each ny=0,1,2,.., and n > n,, we have

non) __ I_G(no’n) G(”Oan)
pl )_( o le(no’n)> (A7)

where F(ng, n) = Py, G(ng, n) = P{™ are given by

Flng, )= f(n) + [L = f(n) = g(n)] Flrig, n—1) (ATa)
=ﬂm+k3§{ﬂmlﬁlU—fm—gm] (ATb)
Gt )= £(1)+ L1 — () — )] Gl 1~ 1) (A8a)
=ﬂm+k311am[f£j1—ﬂn—gn] (ASb)

Furthermore

PP = P = Y — plp™ = 1= Flng, n)~ Glng, n)  (A%%)

n

L=F(ng,n)=Gno,m)=[[ [1~f(k)—g(k)] (A9b)

k=np+1

Proof.
1) — 1 —1,
pspm =Y pgen = pip =t
/

=pSr U plm Y 4 plpn D pg
=pir T U= g(m) 1+ (1 pSen=1) f(n)

This is the same as (A7a). By iteration we obtain (A7b). The proof of (A8)
is similar. Adding (A7) and (A8), we easily obtain (A9). |

Notation. In the remainder of this appendix we will write

F(n)=F(0, n) and G(n)=G(0, n)
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From (A9) we get
Corollary A1. (a) If

+Z [f(n)+gn)]< +0 (A10)

then the following limits exists and are different from zero:

lim (pi”—pit”)= lim (pi"”—pi3")
n— +w

H—

I U—fk)—g)]#0  (ALD)
(b) It
+Z n)+gn)]=+w0 (A12)

then the following limits exist and are zero:

lim (p“)"’ pzl”))- hm (p‘z%”)—pﬁ%’”))=0 (A13)

n—

Remarks. (1) Corollary Al has an obvious interpretation in terms of
the Borel-Contelli Lemma (Ref. 7, p. 200).

(2) If (A10) holds, ™ may or may not have a limit as n - + o0, but
we shall see in Theorem A1 that P*" always has a limit.

(3) If (A12) holds, then we will prove that if =) has a limit, then so
does P [see (A33) and (A34)]. But if " has no limit, P®") may have a
limit [see example (A19)], or it may not have a limit [see example (A27)].

Theorem A.1. If (A10) holds, then p{™, i, j=1, 2, have limits as
n— 400, but

im p%v+#£ lim pH~

n— +oo n— 4o (A14)
lim pyP+# lim p{%»
n— +o0 n— +oc

Proof. From (A7)

. : s
F=11 1 8] {Z T s} 419
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By (A10)

lim H [1—f(k)—gk)]=Cy, Co< 40, Co#0 (Al6)

n— +0o0 k=1
Without loss of generality we may assume that f(n) + g(n) < 1. Then

: ()
LT T o) —20m)] CO,Z 70

By (A10), the right-hand side of (A17) converges as n — +o0. Hence, since
the left-hand side of (A17) increases with », it has a limit as n — +o0. This
together with (A16) implies that F(r) has a limit as n — +oco0. The same
way we prove that G(n) converges as n— +co. This establishes the
existence of the limits of p{®™. (A14) is now a consequence of (A1) and
(Al6). |

Here is an example where 7" has no limit as n — +oc, but P> has a
limit and

(A17)

lim p%m= lim p{g~"

e o (A18)
lim p<0")— hm piom
n— +0oo + o0
Take
2 1 -1)”
f(”)=za g(n)=—+(—)—, for n>=5 (A19)
n
Then

7= (4, 4)
n(2n+ n_ (1’ 0)

Thus 7' has no limit as # = +00. We will show that

lim PO" = <

n— +oo

Wity Wit
i =

) (A20)
Noting that
F2n)= g(m) =2
1]

g2n+1)=0
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we compute

g2n+1)=g2n)[1-f(2n+1)]
+ g(2n=2)[1 = f(2n+ 1)][1 - f(2n) — g(2n)][1 — f(2n+1)]
+ e
+ )= fO)I1 = f(4)— @) I[L = f(5)] -
L1 =f(2n—=1)][1— f(2n)— g(2n) ][ 1 - f(2n+1)]
A straightforward algebra gives

1
(n—1)n(2n+ 1)

+ (n=2)[20n—2)+ 1]+ (n—D[2(n—1)+17}

G2n+1)= (2224 1) +3.23+1)+ -

from which we easily obtain

1
lim G(2n+1)=3 (A21)

Now, from (A8a)
G2n)=G2n—1)+g(2n)— [ f(2n)+ g(2n)] G(2n—1)
Therefore

lim G(2n)=

n— 4o

(PSR

This and (A21) imply that G(») has a limit and

lim G(n) =l (A22)
n—- 4w 3
From (A9b) we have
lim [1—F(n)—Gn)]=0 (A23)
n— 400
because of (A12).
Thus
. 2
Jm Fln=3

This establishes (A20).
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Next we give another specific example where both 7' and P“" have
no limits as n — +00. The choice of functions f(n), g(r) was motivated by
the following observation: For any fixed m we have from (A7a)

Fn)—Fin—m)=f(m)+ % fk) T[] [1—f)—g)]

k=n—m+1 I=k+1
¥ {—1 0 n-so- g(l)]}F(n—m) (A24)
I=n—m+1

Since F(n—m) <1, f(n), g(n) —» 0 as n - co, we see from (A24) that if F(n)
has a limit along a subsequence {#,}, it has the same limit along the sub-
sequence {n;—m}. Thus in order to construct an example where F(n) has
two different limits along two subsequences {n;} and {n,}, the distance
n,~ i, must go to infinity with the subsequences.

Here is our example: Let f(n) be such that

+iof(n)z +oo (A25)
Set
N=Nmn)=f()+f2)+ - +f(n) (A26)
and denote by n(N) the inverse function. We choose A(n) as follows:
g(n(N))= (2 + p cos N) f(n(N)), O<u<l (A27)

Clearly N —» +o00 as n— +oo and vice versa. We will construct two sub-
sequence {N,} and {N,} which give rise to two different limits for F(n(N)).
From (Al5)

F(n)—exp{z log[1—f()— } Z flk

k
x exp {— » log[l—f(l)—g(l)]} (A28)

We extend a function A(n) defined on the positive integers, to a function
A(x) defined on the entire half-line x >0, so that
h(x)=f(k) for k—1<x<k
Then
Y h(k):j" Bi(x) dx + h(1)
k=1 1
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Thus
N:J:f(x)dx+f(1)
and from (A28)
Fn)=f(D[1-f(2)—g2)] - [1 - f(n)—g(n)]

+ Ln dy 7(y) exp {Ln dxlog[l— f(x)— g(x)]}

Since f(y)> 0, we may change variables by setting

dé = f(x)dx
and obtain
Fin)= f(1)[L = £2) = £(2)] - [1— £ n) — g(m)]
N N 1 3
+ [z exp {[[ de s el = Ta(@) - 2@ |
SO =1@)= g [1 = f(n) = g(m)]

+ LN dz exp UZN df},_—(xl(—é)) log[1 — F(x(£))(3 + p cos f)]} (A29)

The leading term as N -» 400, in the integral is

JN dz exp l:— JN dE(3 + p cos é)]

z

- jN dz exp[ —3(N —z) — u(sin N —sin z)]
= jN dt exp(—3t) exp{ —pu[sin N—sin(N—1)]} (A30)

We consider the limit of (A30) along N=2kn and N=(2k+ 1)n. For
N =2kn, we have (recall that 0 < pu<1)
‘ 2nk

. o] .
dte‘&ei#smtka-ﬁ—oo—’j dte\z'ze—,usmz (A31)
0 0

and for N=(2k+ 1)n
J(2k+1)n

. o« .
dl€43t€“5m1k_,+w-—>J\ dt673te+usmt (A32)
0 0

It is easily seen that the limits (A31) and (A32) are different. The first terms
on the right-hand side of (A29) goes to zero as # — 400, and it can be
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verified that the error term we neglected in the integral of (A29) has no
contribution as N — +oco. Thus F(n) has two limits, (A31) and (A32), as
n— +oo along the subsequences n(2nk), n((2k+ 1)n), k— +o0, respec-
tively.

By Theorem 1, if (A10) holds, then P®" always has a limit which
satisfies (A14). Therefore, in this case, if 7" has a limit, it cannot satisfy
(1.11). In contrast, we prove now, that if (A12) holds and = has a limit as
n— +c0, then P also has a limit, and if

hm Tt(")=7r=(7'51, 7'52) (A33)
n— +oo
then
lim PO = (”1 ”2) (A34)
H— +00 Ty Ty

ie., (1.11) holds. To show this, we set
Fn)=n,+ ®(n)

to_L

Y(n)—0 as n— +o
From (A7a) we derive

S(n)= —, f(n)w(n)+[ S

T wn)} P(i—1)  (A3S)

Iterating (A35), and using a representation similar to (A29), we have

— _1_ gp(n)

o _f_’@_ : £ )
‘ﬂ[l f(k““k)}(,zl T )] f(m)—tﬂ(m)}>

=f(1w<1>[1—12—f< e |- [1—11(—)—1"(:1) von |

+jl"dyf(ymy)exp{j"dxlog[ —Z(—— (x) §(x) ]}

=) [T [1=252 v |+ [ w2

<o ([ de s e {1-Te@n [ rde@ | 4

822/39/1-2-9
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The first term goes to zero as n — +o0, by (A12). The integral term may be
written as

L= @B exp | — N2 0010

<oxp| = [N + 4001 (A37)

where

00 = =7z (7O | £+ Tt |

+ log {1 ~F(e) [ n w(x(f»]})
setting /(¥(z)) =¥(z), and N—z=1 we obtain
~[Marew (~ g -nen |~ " atiessen)

and

<[ drexp (= = )wiv-orexs { - " deti@r+ 01}

< dte (< o) nien |- [ am@+sen] am)

Since Y(x), ¢(x)—0 as x - 400, and Y(x)>1—1/m, it is easily seen that
the dominated convergence theorem is applicable in (A38). Since the
integrand in (A38) goes to zero as N — +o0, we obtain

lim Iy=0

N — 4w
By (A36), this implies that @{(n) >0 as n— +o00. Hence F(n)-— =, as

n— +o0. This together with (A9) given that G(n) - n, as n— +o0. This
completes the proof of (A34).
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